
المتجهات أو ما يطلق عليها الكمية المتجهة هي طريقة يتم من خلالها قياس الكميات والتعرف على مقادير الأشياء، وقد تكون معرفة الكمية المتجهة من الأمور الطبيعية في حياتنا. نتناول بحثا عن المتجهات في الفيزياء والرياضيات والفضاء.
بحث فيزياء عن المتجهات
- تستخدم من أجل قياس طول الأشياء.
- يمكن من خلالها التعرف على درجة حرارة الجسم.
- يمكن من خلالها قياس كثافة المادة.
- تستخدم من أجل قياس سرعة الرياح واتجاهها.
- كما أنه يستخدم من أجل قياس قاعة طولها 20 متر والعمل على تحديد اتجاهها.
- بالتالي قد يكون أمر دراسة الكمية المتجهة من الأمور الأساسية والمهمة التي يلزم على الإنسان التعرف عليها.
- وقد تعمل على التمييز بين الكميات المتجهة والكميات السلمية التي يطلق عليها الكميات العددية والكميات القياسية.
- قد تجرى هذه العملية التي لها علاقة بالمتجهات للعمليات الحسابية الأساسية.
- يساعد هذا التطبيق بالعمل على إدراك الفرق بين الكميات السليمة والكميات المتجهة.
- تقوم الكمية المتجهة بتصنيف الكميات الفيزيائية إلى كميات عددية وكميات متجهة، وقد يتم التمثيل إلى هذه المتجهات من خلال الرسم، ويتم تحليل هذه المتجهات في العديد من المستويات التي تحتوي على محورين متعامدين، لإيجاد قيمة خاصة بالمتجهات التي يتم التعرف عليها من خلال المركبات السينية والصادية الخاصة به.

بحث عن المتجهات في الرياضيات
- المتجه عبارة عن كمية لها مقدار (حجم رقمي) واتجاه، هذا هو عكس العددية، وهي كمية لها فقط حجم وبدون اتجاه؛ لذلك، على سبيل المثال، قد تسير السيارة بسرعة 60 ميلًا في الساعة، هذه هي سرعة السيارة، وهي كمية عددية، لكن قد تكون سرعة السيارة 60 ميلًا في الساعة شمالًا، ولكي تكون سرعة، يجب أن يكون لها اتجاه.
- المسافة عبارة عن كمية عددية تخبرك إلى أي مدى تجولت في المنزل، مثلا 400 متر، نظرًا لأنه رقم قياسي، فإن الاتجاه الذي تقوم بتشغيله غير ذي صلة، الشيء الوحيد المهم هو إلى أي مدى سافرت.
- الإزاحة هي كمية متجهة تقيس الفرق في وضعك من حيث بدأت إلى حيث انتهيت، وإذا انتهيت في نفس المكان الذي بدأت فيه، فإن الإزاحة تكون صفرية، يؤثر الاتجاه أو الاتجاهات التي تركتها على النزوح نظرًا لأن النزوح عبارة عن ناقل.
- يتم تمثيل المتجهات بشكل تخطيطي باستخدام سهم، يمثل السهم الطويل رقمًا كبيرًا ويمثل السهم الصغير رقمًا صغيرًا.
بحث عن المتجهات في الفضاء
- الفضاء الاتجاهي أو الفضاء المتجهي يسمى فضاء شعاعي وهو كائن أساسي في دراسة الجبر الخطي. هو عبارة عن مجموعة من عدة متجهات والتي هي كائنات يمكن إضافتها مع بعضها البعض وضربها بأعداد، التي يطلق عليها كميات قياسية في هذا السياق. غالبا ما تكون الكميات القياسيات أعدادا حقيقية، ولكن بالإمكان اختيار فضاءات اتجاهية مع كميات قياسية من أعداد مركبة أو أعداد نسبية أو حتى حقول عامة.
- عمليتا جمع المتجهات وضرب متجهة ما في كمية قياسية ينبغي لهما أن تحققا مجموعة من المتطلبات تدعى موضوعات جاءت أسفله.
- فضاء المتجهات الإقليدية هو مثال على الفضاءات المتجهية حيث يمكن أن تمثلن كميات فيزيائية مختلفة كالقوى وغيرها.
- فعندما نعتبر المتجهات مع العمليات المطبقة عليها من جمع وضرب قياسي وبعض العمليات الأخرى مثل الانغلاق والتجميعية، فإننا نصل لوصف كائن رياضي يُدعى فضاءً اتجاهياً.
- المتجهات في الفضاء الاتجاهي لا تمثل تحديداً متجهات هندسية بل يمكن أن تكون أي كائن رياضي يحقق بدهيات الفضاء الشعاعي.
- كثيرات الحدود من الرتبة ≤n مع معاملات حقيقية تشكل فضاءً شعاعياً.
- تدرس الفضاءات المتجهية في إطار الجبر الخطي وهي مفهومة بشكل كامل من هذا المنطلق، حيث يتميز كل فضاء متجهي ببُعده.
- يحدد هذا البعد عدد الاتجاهات المستقلة عن بعضها البعض داخل الفضاء المعين.
المراجع:
https://ar.wikipedia.org/
https://www.almrsal.com/
https://www.thaqfya.com/